Data Structure (Viva Questions)

Trees:

- 1.Explain the concept of a tree. Discuss its applications.
- 2. What are the two ways of representing binary trees in the memory? Which one do you prefer? and why?
- 3.List all possible non-similar binary trees having four nodes.
- 4. What is the maximum number of levels that a binary search tree with 100 nodes can have?
- 5. What is the maximum height of a tree with 32 nodes?
- 6. What is the maximum number of nodes that can be found in a binary tree at levels 3, 4, and 12?
- 7. Draw all possible non-similar binary trees having three nodes.
- 8. Explain the concept of binary search trees.
- 9. Explain the operations on binary search trees.
- 10. How does the height of a binary search tree affect its performance?
- 11. How many nodes will a complete binary tree with 27 nodes have in the last level? What will be the height of the tree?
- 12. Write a short note on threaded binary trees.
- 13. Why are threaded binary trees called efficient binary trees? Give the merits of using a threaded binary tree.
- 14. Discuss the advantages of an AVL tree.
- 15. How is an AVL tree better than a binary search tree?
- 16. How does a red-black tree perform better than a binary search tree?
- 17. List the merits and demerits of a splay tree.
- 18. Why is a large value of m needed in a B tree?
- 19. Compare B trees with B+ trees.
- 20. In what conditions will you prefer a B+ tree over a B tree?
- 21. Give a brief summary of M-way search trees.

Whether True or False, Explain and Justify with Reasons (Trees)

- 1. Nodes that branch into child nodes are called parent nodes.
- 2. The size of a tree is equal to the total number of nodes.
- 3. A leaf node does not branch out further.
- 4. A node that has no successors is called the root node.
- 5. A binary tree of n nodes has exactly n 1 edges.
- 6. Every node has a parent.
- 7. The Huffman coding algorithm uses a variable length code table.
- 8. The internal path length of a binary tree is defined
- as the sum of all path lengths summed over each path from the root to an external node.
- 9.In a binary search tree, all the nodes in the left sub-tree have a value less than that of the root node.
- 10. If we take two empty binary search trees and insert the same elements but in a different order, then the resultant trees will be the same.
- 11. When we insert a new node in a binary search tree, it will be added as an internal node.
- 12. Mirror image of a binary search tree is obtained by interchanging the left sub-tree with the right sub-tree at every node of the tree.
- 13. If the thread appears in the right field, then it will point to the in-order successor of the node.
- 14. If the node to be deleted is present in the left subtree of A, then R rotation is applied.
- 15. Height of an AVL tree is limited to O(log n).
- 16. Critical node is the nearest ancestor node on the path from the root to the inserted node whose balance factor is -1, 0, or 1.
- 17. RL rotation is done when the new node is inserted in the right sub-tree of the right sub-tree of the critical node.
- 18. In a red-black tree, some leaf nodes can be red.

Graphs:

- 1. Explain the relationship between a linked list structure and a digraph.
- 2. What is a graph? Explain its key terms.
- 3. How are graphs represented inside a computer's memory? Which method do you prefer and why?
- 4.Explain the graph traversal algorithms in detail with example.
- 5. Differentiate between depth-first search and breadth-first search traversal of a graph.
- 6. Explain the topological sorting of a graph G.
- 7. Define spanning tree.
- 8. When is a spanning tree called a minimum spanning tree? Take a weighted graph of your choice and find out its minimum spanning tree.
- 9. Explain Prim's algorithm.
- 10. Write a brief note on Kruskal's algorithm.
- 11. Write a short note on Dijkstra's algorithm.
- 12. Differentiate between Dijkstra's algorithm and minimum spanning tree algorithm.

Whether True or False, Explain and Justify with Reasons:(Graphs)

- 1. Graph is a linear data structure.
- 2. In-degree of a node is the number of edges leaving that node.
- 3. The size of a graph is the total number of vertices in it.
- 4. A sink has a zero in-degree but a positive outdegree.
- 5. The space complexity of depth-first search is lower than that of breadth-first search.
- 6. A node is known as a sink if it has a positive outdegree but the in-degree = 0.
- 7. A directed graph that has no cycles is called a directed acyclic graph.
- 8. A graph G can have many different spanning trees.
- 9. Fringe vertices are not a part of T, but are adjacent to some tree vertex.
- 10. Kruskal's algorithm is an example of a greedy algorithm.